Рабочая программа по геометрии 7 -9 класса составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной образовательной программы основного общего образования, установленных в Федеральном государственном образовательном стандарте основного общего образования.

- 1. Федеральный государственный образовательный стандарт основного общего образования / Министерство образования и науки РФ. М.: Просвещение, 2011
- 2. Авторская программа по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.,составитель Т.А. Бурмистрова М: «Просвещение», 2008 –с. 19-21);
- 3. Примерная программа по учебным предметам «Математика 5 9 класс: проект» М.: Просвещение, 2011 г

Данная рабочая программа предназначена для работы по учебнику Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2014. Этот учебник входит в Федеральный перечень учебников 2016 – 2017 учебного года, рекомендован Министерством образования и науки Российской Федерации, соответствует Федеральному государственному образовательному стандарту основного общего образования.

Изучение геометрии в основной школе направлено на достижение следующих целей:

- осознать, что геометрические формы являются идеализированными образами реальных объектов; научиться использовать геометрический язык для описания предметов окружающего мира; получить представления о некоторых областях применения геометрии в быту, науке, технике, искусстве;
- усвоить систематизированные сведения о плоских фигурах и основных геометрических отношениях;
- приобрести опыт дедуктивных рассуждений: уметь доказывать основные теоремы курса, проводить доказательные рассуждения в ходе решения задач;
- научиться решать задачи на доказательство, вычисление и построение.

1. ПЛАНИРУЕМЫЕ РЕЗУЬТАТЫ ИЗУЧЕНИЯ ГЕОМЕТРИИ В 7-9 КЛАССАХ

Наглядная геометрия

Выпускник научится:

- 1) Распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- 2) Распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- 3) Определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;
- 4) Вычислять объем прямоугольного параллелепипеда;

Выпускник получит возможность:

- 5) Вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- 6) Углубить и развить представления о пространственных геометрических фигурах;
- 7) Применять понятие развертки для выполнения практических расчетов.

Геометрические фигуры

Выпускник научится:

- 1) Пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- 2) Распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

- 3) Находить значение длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения. Свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- 4) Оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- 5) Решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- 6) Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
- 7) Решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- 8) Овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- 9) Приобрести опят применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- 10) Овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- 11) Научиться решать задачи на построение методом геометрического места точек и методом подобия;
- 12) Приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- 13) Приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

- 1) Использовать свойства измерения длин, площадей и углов при решении на нахождение длины отрезка, длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- 2) Вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- 3) Вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
- 4) Вычислять длину окружности, длину дуги окружности;
- 5) Решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- 6) Решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность:

- 7) Вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- 8) Вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- 9) Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

1) Вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

Выпускник получит возможность:

- 3) Овладеть координатным методом решения задач на вычисление и доказательство;
- 4) Приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- 5) Приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

Векторы

Выпускник научится:

- 1) Оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число:
- 2) Находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- 3) Вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- Овладеть векторным методом решения задач на вычисление и доказательство;
- 5) Приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».

2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА ГЕОМЕТРИЯ

в 7-9 классах

Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема: единицы объема. Объем прямоугольного параллелепипеда и куба.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный и равносторонний треугольники; свойства и признаки равнобедренного и равностороннего треугольников. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника.

Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к остром углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности. Взаимное расположение двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, окружность описанная около треугольника. Вписанные и описанные окружности многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число π; длина дуги окружности.

Градусная мера угла, соответствие между центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объяснение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данная. Пример и контрпримеры.

Понятие о равносильности, следовании, употребление логических связок ecnu..., mo..., в mom u moлько mom cnyчае, логические связки u, unu.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.